Phoenix LiDAR Systems User Manual
  • Welcome
  • SpatialExplorer 8 & 9
    • Introduction
    • Installation
      • System Requirements
      • SpatialExplorer-Compatibility
      • Licensing
      • Change Log
    • User Interface
      • Windows
        • AGL Oracle
        • Classify On Selection
        • Coordinate Reference System
        • Corrections
        • Main View
        • Picks
        • Messages
        • Mission Guidance
        • Photo Viewer
        • Project
          • Rover
            • Cameras
              • Camera Acquisition Settings
              • Camera Calibration Settings
              • Camera Processing Settings
              • Camera Tools
                • Load sensor transform/extrinsics from file
                • Calibrate Sensor Manually
                • Edit Receptor Masks
            • IMU
            • GNSS
            • Lidars
              • Lidar Acquisition Settings
              • Lidar Calibration Settings
              • Lidar Processing Settings
              • Lidar Tools
                • Load sensor transform/extrinsics from file
          • Reference Stations
          • Flightplans
          • Geometry
            • Modifying Geometries
          • Grid
          • Ground Control
          • Images
          • Intervals
          • Trajectories
          • Pointclouds
          • Terrains
        • Project Player
        • Sensors
        • SLAM
          • SLAM Processing Profile
        • System Monitor
      • Toolbars
        • File
        • View
        • Selection
          • Cloud Script Tool
        • Workflow
          • NavLab Embedded
            • Processing Options
            • Estimating Primary Antenna Lever Arm
          • Create Intervals
          • Disambiguate Lidar Ranging
          • Create Cloud
          • LiDARSnap
            • Sensor Calibration
            • Trajectory Optimization
              • Aerial Trajectory Optimization
              • Mobile Trajectory Optimization
            • Ground Control with LiDARSnap
              • Vertical Only Adjustment
              • Full Adjustment
            • LiDARSnap Tuning and Parameters
            • Control Point Clouds
            • Example: Optimizing Data from Multiple Scans
          • CameraSnap
            • Auto-detect without review
            • Auto-detect with manual review
            • Manually-Created Matches
            • CameraSnap Reports
          • Colorize Cloud
          • Align to GCPs
            • Adjusting Automatically to GCPs (Vertical Only)
            • Manual Adjustment (Horizontal and Vertical)
          • Reports
          • Export
        • Analytics
          • Classify
            • Classify By Class
            • Classify Noise
            • Classify Statistical Outliers
            • Classify Ground
            • Classify Powerlines
            • Classify Moving Objects
          • Create
            • Create Maps
            • Create Floorplans
            • Create Contours
            • Create Mesh
            • Compute Normals
            • CloudClean
          • Calculate Distance
          • Measure
            • Std. Dev. Along Surface Normal
            • Surface Area and Point Density
            • Volume
          • Compute SOCS
        • LiDARMill
          • Positions
          • Manage Grids
          • View GNSS Antennas
        • Rover
          • Connect to Rover
          • Disconnect from Rover
          • Rover Settings and Profiles
            • Navigation System
            • Sensors
            • Camera Settings
            • LiDAR Settings
          • Shutdown Rover
        • Tools
          • Navigation
            • Plot Trajectories
          • Camera
            • Edit Camera Events
            • Create Camera Sessions from Data
          • Licensing
          • Create Transformation...
    • Workflows
      • Data Processing Workflows
        • Airborne Lidar Processing
        • Mobile Lidar Processing
        • Backpack and Pedestrian Lidar Processing
        • SLAM Lidar Processing
        • LAZ Processing
        • Field Data Check
    • FAQs
  • LiDARMill Cloud
    • Introduction
    • Login/Register
      • User management
    • Quick Start Guide
    • Overview
    • Post Processing Workflow
      • Create New Project
        • Details
        • Project Reference Setup
        • Summary
      • Create New Mission
        • Uploading a SpatialExplorer Mission
        • Uploading a RECON Mission
        • Uploading a Pointcloud Processing Mission
      • Adding Reference Station Data
      • Adding Ground Control Points and Polygons
        • Ground Control Points (GCPs)
        • Polygons
      • Processing Tools
        • NavLab Pipeline
        • Spatial Fuser Pipeline
        • Pointcloud Optimization Pipeline
      • Cloud Viewer
      • Additional Tabs
    • FAQs
  • FlightPlanner
    • Introduction
    • User Interface
      • FlightPlanner Interface Tools
        • Change Theme
        • Feedback, Help, and Changelog
        • Flight Info
        • Delete All
        • Measurement and Reset View
        • Upload Google KMZ file and Delete All KMLs
        • Take off Location
        • Reverse Waypoint Order, Undo, and Auto Update mission flightlines on setting change
        • Address Search
    • Workflow
      • Missions Library
      • Basic UAS LiDAR Mission Planning (FP 9.0)
      • Mission Type
    • Overlap
    • FAQs
  • Hardware and Interfaces
    • Warnings and Safety Notices
      • LiPo Battery Safety
        • General Guidelines and Warnings
        • Pre-Charging Guidelines
        • Charging Process Guidelines
        • Storage/Transportation Guidelines
        • Battery Care Guidelines
      • Laser Safety
        • Class 1 Lasers
        • VUX-240 Laser Safety
      • Aircraft/Rover Operational Safety
    • Connecting and Interfacing with Phoenix Lidar Systems
      • Connect via Rover's Web Interface
      • Connecting via SpatialExplorer
        • Base Station (Notebook) Setup
          • Configure Windows
            • Disable Automatic Updates
            • Change Active Hours
            • Install Latest NVIDIA Drivers
          • Modify Hosts File
          • Wired Ethernet Network Card Setup
          • Install Software Tools
            • 7-Zip
            • Filezilla
            • Teamviewer
            • PuTTY
            • NovAtel Connect and NovAtel Convert4
        • Connect to Rover
          • Connect to Rover as a UDP Client
            • Connect via Wi-Fi
            • Connect via Ethernet
              • Connect via 900 MHz Radio
            • Connect Via Ground-Station-Wi-Fi (Groove)
              • Connect via Ground Station Wi-Fi (Bullet M5)
          • Connect to Rover using a Serial Port
          • Connect to Rover via Connection Service
            • Connect via Cellular
        • User Interface
          • Settings
            • Rover Settings
              • General
              • Navigation System
              • Network
            • Local Settings
          • System Monitor
          • Sensors
          • Satellites
      • Downloading Rover Data
        • Log Files
      • Updating Rover
    • NavBox
      • FLEXPack
        • Specifications
        • Ports and User Elements
        • Status LED
        • Using the CPU button
        • Preparing the System
        • Recording Data
        • Questions & Troubleshooting
      • Air
        • Specifications
        • Ports and User Elements
        • Status LED
        • Using the CPU Button
        • Preparing the System
        • Recording Data
        • Questions & Troubleshooting
      • Scout
        • Specifications
        • Ports and User Elements
        • Using the CPU/Sensor Button
        • Preparing the System
        • Recording Data
        • Questions & Troubleshooting
      • RECON Series
      • Alpha 3
        • Ports and User Elements
        • IMU-32/IMU-33/IMU-34
        • IMU-41/IMU-52
        • IMU-14/IMU-27
    • Camera
      • Sony Mirrorless Cameras
        • Specifications
        • Camera Settings
        • A7R4 Warning Messages
      • A7R4-Lite
        • Sony A7R4-Lite SD card folder setup procedure
      • A6K-Lite Camera
        • Highlights
        • Specifications
        • Warnings
        • Ports and User Elements
        • Status & Activity LED
        • Settings Wheel
        • Mounting
        • Powering ON the Camera - Self-Check
        • Operating with Spatial Explorer
          • Changing the Trigger Interval / Distance
          • Initial Camera Setup
          • Dual A6K-Lite Setup
        • Changing Camera Settings
        • Troubleshooting
      • Ladybug5+ and LadybugCapPro
        • Pre-Procedure
        • Data Acquisition
    • Lidars
      • Real-Time Point Clouds and MTA Disambiguation
    • Inertial Navigation System
      • Orientation and Offsets
        • IMU
        • GNSS Antennas
        • LiDARs and Cameras
      • Wheel Sensor
    • Miscellaneous Hardware
      • Mobile Roof Rack
        • RFM2-Dual LiDAR Mobile Accessory
      • Backpack Lidar Mount
        • Backpack Telescoping Boom
      • Wi-Fi Range Extenders
      • Accessories
        • Cables
          • SMB to SMA GPS Antenna Cable
          • MCX to RP-SMA WiFi Antenna Cable
          • LiDAR / Camera Cable
          • micro USB to USB Type A Female Cable
          • RJ45 Ethernet Cable
          • HDMI Cable Type D to Type A
          • SMA to TNC Ground Mount GNSS Antenna Cable
          • 7.5” Rover GPS Antenna Cable
          • 24” Rover GPS Antenna Cable
        • Power Supply Parts
          • Power Splitter Cable
          • AC Power Supply
          • XT30 3" Extension Cable
          • XT60 Female to XT30 Male Adapter
          • XT60 Male to XT30 Female Adapter
          • XT60 Female to EC5 Male
          • XT60 Extension Cable
        • Antennas
          • Rover GNSS Antenna
          • UHF Rubber Duck Antenna
          • Ground Mount GNSS Antenna
          • Bullet Long Range Module
          • Omni 12dBi Antenna for Bullet Module
          • Rover 5.8 GHz Wi-Fi Antenna RP-SMA
        • Other Components
          • LiDAR/IMU Cable
          • LiDAR Cable
          • IMU Cable
          • AL3 Power Cable with Integrated Splitter
          • EC5 to XT60 Adapter Cable
          • LiPo with EC5 Connector
          • LiPo Charger
          • 5.8 GHz Directional Panel Antenna
          • TNC 90 Degree Adapter
        • Miscellaneous
          • USB Drive
          • USB to Ethernet Adapter
          • Suction Cups w/ Clamps
          • Multi-Tool
          • SMA Wi-Fi Terminator
          • LiDAR Sensor Cover
          • LiPo Guard Battery Bag
          • Cable Accessories Bag
          • Storm Case
          • Foam Divider
  • Data Acquisition and UAV Piloting
    • Flight Planning
      • UAS LiDAR Hot Swapping
    • UAV Data Acquisition
    • Mobile Acquisition
    • Backpack Acquisition
      • Ranger FLEX Initialization and Acquisition Workflow
      • Recon XT Initialization and Acquisition Workflow
    • SLAM Acquisition
    • Navigation System Configuration
      • Navigation System Basics
      • Real-Time and Post-Processing Differences
      • Further Reading
        • GPS Time Status
        • Navigation Procedures
        • IMU Alignment
        • Navigation System Stabilization
    • RECON UAV Acquisition
    • RECON Series Quick Start Guides
      • RECON-XT M300/M350
      • RECON-XT-A FreeFly Astro
      • RECON-A
    • Calibration Flight Strategy
    • Acquisition FAQs
    • Post Acquisition Checks
  • MissionGuidance
    • Introduction
    • Flightplans
    • Heightmaps
    • Setup
    • Operations
  • GNSS Hardware and Ground Control
    • Reference Stations
    • Downloading Reference Station Data
    • Ground Control - Best Practices
    • Stonex S-900 and Cube-A
      • Cube-A project set up
      • Configure base station
        • Configuring Harxon HX-DU8608D radio
      • Configure rover
      • Surveying ground control points
      • Post processing
        • Post processing base station observations
        • Change base coordinates to a post processed position
        • Export points from Cube-A
  • Reports
    • Processing Report
    • Project Report
    • Trajectory Report
  • 3rd Party Software Documentation
    • Bathymetric LiDAR Processing in RiProcess
      • Creating a Project in RiProcess
        • Adding a Navigation Device
        • Adding a Trajectory
        • Adding a Scanner
        • Adding a Camera
        • Adding Control Objects
        • Processing Parameters
          • Exponential Decomposition
          • Page
        • Adding Records
      • Data Processing Wizard
      • Visualize Data
      • RiPrecision
      • RiHydro Workflow
    • RiParameter
    • TerraSolid and Spatix Install
    • Orthomosaic Production with Pix4D
    • InertialExplorer Desktop 8.70 - 8.90 Processing
    • Hyperspectral Data Processing
    • SDCImport Filter Options
      • MTA (Multiple Time Around)
      • Region of Interest
  • Image Processing using PhaseOne IXCapture
  • General FAQ
    • Accuracy Standards & Quantification
      • Precision
      • Relative Accuracy
      • Absolute Accuracy
      • Further Considerations
    • Mapping Terms and Definitions
    • Abbreviations
    • Examples: How to ensure accurate Georeferencing of Trajectories and Pointclouds
      • Example 1: Static Datum
      • Example 2: Dynamic Datum
    • Clock bias adjustment
    • General FAQs
  • Legacy Documentation
    • Offsets, Rotations, and Reference Frames: SpatialExplorer Version 4-7
    • Legacy TerraSolid Documentation
    • Legacy SpatialExplorer Documentation
Powered by GitBook
On this page
  1. Hardware and Interfaces
  2. NavBox
  3. Scout

Ports and User Elements

The following graphics will introduce you to the SCOUT Series NavBox connection ports and user elements.

PreviousSpecificationsNextUsing the CPU/Sensor Button

Last updated 1 year ago

  1. HDMI Type A Port

  2. Fan Ventilation Openings

  3. RJ45 Ethernet Port

  4. 2x USB 3.0 Type A Ports

  5. USB Type C Port

  6. I/O Connector (37-pin)

  7. Power Input Connector MR30

  8. Power Connector Safety Thread

  9. LED Indicators

  10. ANT1 Port SMA for external GPS Antenna (primary port)

  11. CPU Button

  12. ANT2 Port SMA for external GPS Antenna (secondary port)

  13. Sensor ON/OFF Switch

  14. WLAN Port SMA for external WiFi Antenna

  15. Removable Service Panel with additional USB Ports

Detailed Descriptions

(1) HDMI Type A Port

This HDMI port is only needed for debugging purposes and allows to connect an external monitor to the NavBox.

(2) Fan Ventilation Grills The SCOUT NavBox contains internal fans to provide proper cooling for the unit. The fan ventilation openings on the front panel allow the hot air that was generated inside the unit to exit the enclosure.

Please make sure that the ventilation openings are not blocked by other objects. Otherwise, overheating of the unit may occur.

(3) RJ45 Ethernet Port

(4) 2x USB 3.0 Type A Ports

Additional high-speed USB ports for connecting additional accessories such as a 4G LTE Module.

(5) USB Type C Port

Additional high-speed USB Type C port for connecting additional accessories.

(6) I/O Connector (37-pin)

External LiDAR sensors, cameras, and other accessories will connect to this I/O connector. Only connect the provided LiDAR/Camera cable that was shipped with your unit. Each cable is custom-made by us to fit your specific system configuration (combination of LiDAR and cameras).

Never connect or disconnect the I/O cable or any attached sensors/cameras from the I/O connector while the unit is supplied with power. This can lead to substantial damages to both NavBox and attached sensors/cameras. Always shut down the unit completely and unplug the power supply before disconnecting the I/O connector. In most cases, disconnecting the LiDAR/Camera cable from the I/O connector is never needed and the cable should be left connected at all times.

The permitted input voltage range is DC 12-28V and is therefore suitable for all 3 to 6 Cell LiPo Batteries.

It is recommended to first connect the Power Splitter Cable to the NavBox before connecting the batteries (or drone power output). After shutting down the system (via the CPU button), first disconnect the battery/power supply from the Power Splitter Cable before unplugging the cable from the NavBox. This will prevent damages due to sparking on the MR30 input connector.

(8) Power Connector Safety Thread The provided Power Splitter Cable that will connect to the MR30 input connector will have a safety thumbscrew which must be secured to the front panels thread. This will prevent unexpected power interruptions.

(9) LED Indicators The SCOUT NavBox has the following LED indicators:

  • RDO: For integrated Radio Modem (currently not utilized)

  • EVT: Camera Event indicator will flash green when rover registered an image has been captured by an externally connected camera.

  • NMEA: Will flash green rapidly whenever the navigation system is sending out GNSS packets to connected LiDAR sensors.

  • PPS: Will flash once per second indicating the unit is obtaining precise and synchronized GNSS time.

  • POS: Will show a constant green light once the system has obtained GPS position.

(10) ANT1 Port SMA for external GPS Antenna (primary port)

Connect the external GPS antenna to this SMA connector via the provided antenna cable. This is the primary GPS antenna connector labeled ANT1 and must always be used for single antenna configurations.

Only connecting the antenna to the ANT2 port (if available) for a single antenna setup will cause the unit to not synchronize to GNSS time and it would then reject starting any sensor, indicating to the user that time is not yet synchronized.

Furthermore, for dual antenna configurations, connecting the antennas appropriately for primary and secondary is important as a wrong combination will cause problems during post-processing.

(11) CPU Button

The CPU button will turn ON/OFF the internal CPU. Please note that the CPU will power on automatically once power is supplied via the MR30 input connector. In case the CPU does not turn on after supplying power, simply press the CPU button once.

The CPU button has a circular LED ring to indicate the status of the CPU:

  • Red LED: CPU is powered OFF

  • Green LED: CPU is powered ON

Before unplugging the power supply, the CPU must be shut down properly by pressing the CPU button and waiting for the LED ring to turn red.

Pulling power without properly shutting down the CPU (when LED ring is green) can lead to corruptions of the processors file system.

(12) ANT2 Port SMA for external GPS Antenna (secondary port)

For dual antenna configurations, connect the secondary GPS antenna to this port. For single antenna configurations, leave this port unconnected.

(13) Sensor Switch

The Sensor switch will turn ON/OFF the LiDAR Sensor. Before starting a mapping mission, make sure this latching switch is in the ON position (pressed in).

We recommend turning on the sensor via this switch once power has been supplied to the unit and the CPU is powered on (CPU button LED ring is green).

Similarly, we recommend switching off the sensor before unplugging the power supply from the unit after a successful mapping mission.

(14) WLAN Port SMA for external WiFi Antenna

This is an SMA type connector and will be used to connect an external WiFi antenna to the system (if required).

(15) Removable Service Panel with additional USB Ports

This panel can be removed and has additional USB ports, if they are required.

Use this Ethernet port to connect to rover via a wired connection to control the unit with our Spatial Explorer Software. Also refer to .

(7) Power Input Connector This MR30 connector will be used to supply power to the NavBox and all connected LiDAR sensors and cameras. Only use the provided that was shipped with the system to supply power. This Power Splitter Cable will also allow you to hot-swap 2 batteries during operation without power interruptions. The yellow XT60 connector of the Power Splitter cable shall be used as the primary power source input, while the black XT60 connector is dedicated for the secondary power source input.

Connect Via Ethernet
Power Splitter Cable